

Jason Bloomberg, March 11, 2015

Copyright © 2015 Intellyx LLC | +1-617-517-4999 | agility@intellyx.com | www.intellyx.com

Microservices: Avoiding Dumb Pipes

One of the hottest new terms in the world of enterprise computing is the microservice. Starting

with the seminal 2014 article by James Lewis and Martin Fowler of ThoughtWorks, microservices

have taken on a life of their own – and as with any other overhyped term, they have generated

their fair share of confusion as well.

Lewis and Fowler specifically focus on the microservice architectural style, which they define as “an

approach to developing a single application as a suite of small services, each running in its own

process and communicating with lightweight mechanisms, often an HTTP resource API.”

However, there are two limitations to this definition:

first, the definition expressly focuses on single, discrete

applications, rather than the complex, interconnected

web of functionality characteristic of modern

architectures. And second, they leave the word “service”

woefully undefined, leaving it up to the reader to figure

out what they mean by a service – even though there is

still rampant confusion on this point as well.

Helping to clear up this confusion is Janakiram MSV’s

January 2015 article for ComputerWeekly. In this article, Janakiram defines microservices as “fine-

grained units of execution.” He continues:

They are designed to do one thing very well. Each microservice has exactly one well-

known entry point. While this may sound like an attribute of a component, the

difference is in the way they are packaged.

Microservices are not just code modules or libraries – they contain everything from

the operating system, platform, framework, runtime and dependencies, packaged as

one unit of execution.

Each microservice is an independent, autonomous process with no dependency on

other microservices. It doesn’t even know or acknowledge the existence of other

microservices.

Microservices communicate with each other through language and platform-agnostic

application programming interfaces (APIs). These APIs are typically exposed as Rest

endpoints or can be invoked via lightweight messaging protocols such as RabbitMQ.

They are loosely coupled with each other avoiding synchronous and blocking-calls

whenever possible.

mailto:agility@intellyx.com
http://www.intellyx.com/
http://martinfowler.com/articles/microservices.html
http://www.thoughtworks.com/
http://www.janakiram.com/
http://www.computerweekly.com/feature/Microservices-How-to-prepare-next-generation-cloud-applications

Architecting Agility™

Copyright © 2015 Intellyx LLC | +1-617-517-4999 | agility@intellyx.com | www.intellyx.com

What I like most about Janakiram’s definition of microservices is first, it’s concrete, and second,

it’s not circular. In other words, he defines a microservice in terms of its physical components,

and he doesn’t use the word “service” in his definition.

Smart Endpoints, Dumb Pipes

The focus of this article, however, is on how microservices communicate with each other and

with everything else. As Janakiram points out, such communication should be lightweight and

platform-agnostic, what Lewis and Fowler refer to as dumb pipes.

The contrast that the ThoughtWorks fellows are trying to make is between the lightweight

protocols Janakiram is referring to and the heavyweight, middleware-centric enterprise service

buses (ESBs) that drove many of the SOA implementations in the 2000s.

Lewis and Fowler clearly have a bone to pick with this first-generation approach to SOA. “In

particular we have seen so many botched implementations of service orientation, from the

tendency to hide complexity away in ESB’s, to failed multi-year initiatives that cost millions and

deliver no value, to centralised governance models that actively inhibit change,” Lewis and Fowler

pontificate, “that it is sometimes difficult to see past

these problems.”

Lewis and Fowler are making an important point, of

course. Many SOA initiatives failed – or at least, took

far longer and cost far more than they should have –

because large middleware vendors hoodwinked

enterprise IT shops into believing that buying and

deploying their heavyweight ESBs was the best way to

implement SOA.

In response, Lewis and Fowler recommend “applications

built from microservices aim to be as decoupled and as

cohesive as possible,” following RESTful protocols

instead of centralized orchestration on an ESB.

For those situations where more than simple HTTP-

based interactions are necessary, they recommend a

“dumb” message bus – “dumb as it acts as a message router only” – simply to provide a reliable

asynchronous fabric, but “the smarts still live in the end points,” in other words, in the

microservices themselves.

From “Dumb” to “Web Scale”

Unfortunately, Lewis and Fowler’s diatribe against first-generation SOA – no matter how justified

– has muddied the water over the appropriate role for microservice integration technologies.

MANY SOA INITIATIVES

FAILED BECAUSE LARGE

MIDDLEWARE VENDORS

HOODWINKED ENTERPRISE IT

SHOPS INTO BELIEVING THAT

BUYING AND DEPLOYING

THEIR HEAVYWEIGHT ESBS

WAS THE BEST WAY TO

IMPLEMENT SOA.

mailto:agility@intellyx.com
http://www.intellyx.com/

Architecting Agility™

Copyright © 2015 Intellyx LLC | +1-617-517-4999 | agility@intellyx.com | www.intellyx.com

Clearly, no one aspires to be dumb, so using such a pejorative term doesn’t advance the

discussion properly.

If we take a step back and compare notes between the ThoughtWorks piece and Janakiram’s,

however, a more useful set of architectural principles emerge: horizontal scalability. Stateless

communications. Event-driven, reactive interactions. Asynchronous interactions that favor

eventually consistent data. In other words, web scale.

While it’s true that we don’t want centralized, stateful

orchestration of services, we also don’t want to limit

our microservice interactions to the extent that they

are “dumb.” Rather, we simply have a new way of

thinking about “smart” pipes – microservice integration

that is architected following web scale, cloud-centric

principles.

Rethinking the smart endpoints/dumb pipes dichotomy

as smart endpoints/web scale pipes sends a better

message about the proper approach to integration in a

microservices architecture. Furthermore, this way of

thinking about microservice integration opens up an

appropriate consideration of a broad class of web scale integration technologies, including

products from companies like SnapLogic and Fiorano Software as well as a rapidly expanding

category of integration-platform-as-a-service (iPaaS) providers.

In fact, both SnapLogic and Fiorano have implemented their integration technology as

microservices, and furthermore, SnapLogic customers can leverage their Ultra Pipelines to build

microservices that serve as “web scale pipes.”

This approach to integration bears only a passing resemblance to the traditional heavyweight ESBs

of old, and are far more deserving of the “smart” moniker than those centralized middleware

behemoths.

In the final analysis, microservices are one aspect of modern distributed computing best practice.

Today’s customers require massive scale and blisteringly fast performance from the technology

that enterprises (and everyone else) delivers. Microservices are a part of this story, but so are the

web scale principles of microservice integration.

SnapLogic and Fiorano Software are Intellyx clients. At the time of writing, no other organizations

mentioned in this article are Intellyx clients. Intellyx retains full editorial control over the content of this

article. Image credit: Seeweb and Ben Jones.

WE HAVE A NEW WAY OF

THINKING ABOUT “SMART”

PIPES – MICROSERVICE

INTEGRATION THAT IS

ARCHITECTED FOLLOWING

WEB SCALE, CLOUD-CENTRIC

PRINCIPLES.

mailto:agility@intellyx.com
http://www.intellyx.com/
http://www.snaplogic.com/
http://www.fiorano.com/
http://www.intellyx.com/
https://www.flickr.com/photos/seeweb/
https://www.flickr.com/photos/31644495@N08/

